Q:
Given a Binary Search Tree and 2 nodes value n1 and n2, your task is to find the lowest common ancestor of the two nodes. Assume that n1 and n2 both existing node value of the tree
belongs to collection: Interview C++ coding problems/challenges | tree
Interview C++ coding problems/challenges | tree
- Find the level in a binary tree with given sum K
- Check whether a Binary Tree is BST (Binary Search Tree) or not
- Print vertical sum of a binary tree
- Print Boundary Sum of a Binary Tree
- Given a Binary Tree T and a sum S, write a program to check whether there is a root to leaf path in that tree with the input sum S
- Given a Binary Tree write a program to print the nodes which don’t have a sibling node. Print all the nodes separated by space which do not have sibling in the tree in sorted order if every node has a tree than print -1
- Given a Two Binary Trees, write a function that returns true if one is mirror of other, else returns false
- Given a Binary Tree where each node has positive and negative values. Convert this to a tree where each node contains the sum of the left and right sub trees in the original tree. The values of leaf nodes are changed to 0
- Given a binary Tree, check whether the tree is symmetric or not
- Write a program to print Reverse Level Order Traversal of a binary tree
- Given an array where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1
- Given a Binary Tree, write a function getLevelDiff which returns the difference between the sum of nodes at odd level and the sum of nodes at even level
- Write a function to detect if two trees are isomorphic
- Given an expression tree evaluate the expression tree
- Given a Binary Tree and a number K. Print all nodes that are at distance K from root (root is considered at distance 0 from itself)
- Given a Binary Tree, print Right view of it. Right view of a Binary Tree is set of nodes visible when tree is visited from Right side
- Given a Binary Tree, find diameter of it. The diameter of a tree is the number of nodes on the longest path between two leaves in the tree
- Given a BST and a value x, write a function to delete the nodes having values greater than or equal to x. The function will return the modified root
- Given a binary tree, print the diagonal traversal of the binary tree
- Given a Binary Tree, Print the corner nodes at each level. The node at the leftmost and the node at the rightmost
- Given a Binary Search Tree and 2 nodes value n1 and n2, your task is to find the lowest common ancestor of the two nodes. Assume that n1 and n2 both existing node value of the tree
- Given a string that contains ternary expressions. The expressions may be nested. You need to convert the given ternary expression to a binary Tree and return the root
- Given a binary tree, print the bottom view from left to right
- Given a Binary Tree and a target key, write a function that prints all the ancestors of the key in the given binary tree
- Given a Binary Tree of size N, write a program that prints all the possible paths from root node to the all the leaf node\'s of the binary tree
- Given a binary tree, where every node value is a number between 0-9. Find the sum of all the numbers which are formed from root to leaf paths
- Given a binary tree, and two node values your task is to find the minimum distance between them
- Find the k-th smallest element in a given binary search tree (BST)
- Write a program to print Level Order Traversal in spiral form of a binary tree
- Given a binary Tree find the maximum path sum. The path may start and end at any node in the tree
- Given an array pre[] of N nodes representing preorder traversal of BST. The task is to print its postorder traversal
- Given two n-ary trees, the task is to check if they are mirrors of each other or not
- Find number of nodes in a complete Binary Tree
The key idea of the solution is while traversing BST from root to bottom, the first node that is encountered with a value between n1 and n2, i.e., n1<node->data<n2, is the Least Common Ancestor(LCA) of those two nodes having values n1, n2 respectively.
So, traverse the BST using pre-order traversal. If we find a node with value in between n1 and n2, the node is the LCA. If its (the currently processed node) value is greater than both n1 and n2, then the LCA lies in the left subtree of the currently processed node and if its (the currently processed node) value is smaller than both n1 and n2 then the LCA must be on the right subtree of the currently processed node.
Algorithm:
Example with explanation:
C++ implementation
Output