Q:

Program to create and display a singly linked list

belongs to collection: Singly Linked List Programs

0

Explanation

In this program, we need to create a singly linked list and display all the nodes present in the list.

Singly Linked List

The singly linked list is a linear data structure in which each element of the list contains a pointer which points to the next element in the list. Each element in the singly linked list is called a node. Each node has two components: data and a pointer next which points to the next node in the list. The first node of the list is called as head, and the last node of the list is called a tail. The last node of the list contains a pointer to the null. Each node in the list can be accessed linearly by traversing through the list from head to tail.

Consider the above example; node 1 is the head of the list and node 4 is the tail of the list. Each node is connected in such a way that node 1 is pointing to node 2 which in turn pointing to node 3. Node 3 is again pointing to node 4. Node 4 is pointing to null as it is the last node of the list.

Algorithm

  1. Create a class Node which has two attributes: data and next. Next is a pointer to the next node.
  2. Create another class which has two attributes: head and tail.
  3. addNode() will add a new node to the list:
    1. Create a new node.
    2. It first checks, whether the head is equal to null which means the list is empty.
    3. If the list is empty, both head and tail will point to the newly added node.
    4. If the list is not empty, the new node will be added to end of the list such that tail's next will point to the newly added node. This new node will become the new tail of the list.
  4. display() will display the nodes present in the list:
    1. Define a node current which initially points to the head of the list.
    2. Traverse through the list till current points to null.
    3. Display each node by making current to point to node next to it in each iteration.

Input:

 

#Add nodes to the list  

sList.addNode(1);  

sList.addNode(2);  

sList.addNode(3);  

sList.addNode(4);  

Output:

Nodes of singly linked list: 1 2 3 4

All Answers

need an explanation for this answer? contact us directly to get an explanation for this answer

Python

#Represent a node of the singly linked list  
class Node:  
    def __init__(self,data):  
        self.data = data;  
        self.next = None;  
          
class SinglyLinkedList:  
    #Represent the head and tail of the singly linked list  
    def __init__(self):  
        self.head = None;  
        self.tail = None;  
          
    #addNode() will add a new node to the list  
    def addNode(self, data):  
        #Create a new node  
        newNode = Node(data);  
          
        #Checks if the list is empty  
        if(self.head == None):  
            #If list is empty, both head and tail will point to new node  
            self.head = newNode;  
            self.tail = newNode;  
        else:  
            #newNode will be added after tail such that tail's next will point to newNode  
            self.tail.next = newNode;  
            #newNode will become new tail of the list  
            self.tail = newNode;  
              
    #display() will display all the nodes present in the list  
    def display(self):  
        #Node current will point to head  
        current = self.head;  
          
        if(self.head == None):  
            print("List is empty");  
            return;  
        print("Nodes of singly linked list: ");  
        while(current != None):  
            #Prints each node by incrementing pointer  
            print(current.data),  
            current = current.next;  
   
sList = SinglyLinkedList();  
          
#Add nodes to the list  
sList.addNode(1);  
sList.addNode(2);  
sList.addNode(3);  
sList.addNode(4);  
   
#Displays the nodes present in the list  
sList.display();  

 

Output:

 Nodes of singly linked list: 
1 2 3 4

 

C

#include <stdio.h>  
#include <stdlib.h>  
//Represent a node of singly linked list  
struct node{  
    int data;  
    struct node *next;  
};      
   
//Represent the head and tail of the singly linked list  
struct node *head, *tail = NULL;  
   
//addNode() will add a new node to the list  
void addNode(int data) {  
    //Create a new node  
    struct node *newNode = (struct node*)malloc(sizeof(struct node));  
    newNode->data = data;  
    newNode->next = NULL;  
      
    //Checks if the list is empty  
    if(head == NULL) {  
        //If list is empty, both head and tail will point to new node  
        head = newNode;  
        tail = newNode;  
    }  
    else {  
        //newNode will be added after tail such that tail's next will point to newNode  
        tail->next = newNode;  
        //newNode will become new tail of the list  
        tail = newNode;  
    }  
}  
   
//display() will display all the nodes present in the list  
void display() {  
    //Node current will point to head  
    struct node *current = head;  
      
    if(head == NULL) {  
        printf("List is empty\n");  
        return;  
    }  
    printf("Nodes of singly linked list: \n");  
    while(current != NULL) {  
        //Prints each node by incrementing pointer  
        printf("%d ", current->data);  
        current = current->next;  
    }  
    printf("\n");  
}  
      
int main()  
{  
    //Add nodes to the list  
    addNode(1);  
    addNode(2);  
    addNode(3);  
    addNode(4);  
      
    //Displays the nodes present in the list  
    display();  
   
    return 0;  
}  

 

Output:

Nodes of singly linked list: 
1 2 3 4

 

JAVA

public class SinglyLinkedList {  
      
    //Represent a node of the singly linked list  
    class Node{  
        int data;  
        Node next;  
          
        public Node(int data) {  
            this.data = data;  
            this.next = null;  
        }  
    }  
   
    //Represent the head and tail of the singly linked list  
    public Node head = null;  
    public Node tail = null;  
      
    //addNode() will add a new node to the list  
    public void addNode(int data) {  
        //Create a new node  
        Node newNode = new Node(data);  
          
        //Checks if the list is empty  
        if(head == null) {  
            //If list is empty, both head and tail will point to new node  
            head = newNode;  
            tail = newNode;  
        }  
        else {  
            //newNode will be added after tail such that tail's next will point to newNode  
            tail.next = newNode;  
            //newNode will become new tail of the list  
            tail = newNode;  
        }  
    }  
      
    //display() will display all the nodes present in the list  
    public void display() {  
        //Node current will point to head  
        Node current = head;  
          
        if(head == null) {  
            System.out.println("List is empty");  
            return;  
        }  
        System.out.println("Nodes of singly linked list: ");  
        while(current != null) {  
            //Prints each node by incrementing pointer  
            System.out.print(current.data + " ");  
            current = current.next;  
        }  
        System.out.println();  
    }  
      
    public static void main(String[] args) {  
          
        SinglyLinkedList sList = new SinglyLinkedList();  
          
        //Add nodes to the list  
        sList.addNode(1);  
        sList.addNode(2);  
        sList.addNode(3);  
        sList.addNode(4);  
          
        //Displays the nodes present in the list  
        sList.display();  
    }  
}  

 

Output:

Nodes of singly linked list: 
1 2 3 4

 

C#

 using System;  
                      
public class CreateList  
{  
    //Represent a node of the singly linked list  
    public class Node<T>{  
        public T data;  
        public Node<T> next;  
          
        public Node(T value) {  
            data = value;  
            next = null;  
        }  
    }  
          
    public class SinglyLinkedList<T>{  
        //Represent the head and tail of the singly linked list  
        public Node<T> head = null;               
         public Node<T> tail = null;  
      
        //addNode() will add a new node to the list  
        public void addNode(T data) {  
            //Create a new node  
            Node<T> newNode = new Node<T>(data);  
   
            //Checks if the list is empty  
            if(head == null) {  
                //If list is empty, both head and tail will point to new node  
                head = newNode;  
                tail = newNode;  
            }  
            else {  
                //newNode will be added after tail such that tail's next will point to newNode  
                tail.next = newNode;  
                //newNode will become new tail of the list  
                tail = newNode;  
            }  
        }  
   
        //display() will display all the nodes present in the list  
        public void display() {  
            //Node current will point to head  
            Node<T> current = head;  
              
            if(head == null) {  
                Console.WriteLine("List is empty");  
                return;  
            }  
            Console.WriteLine("Nodes of singly linked list: ");  
            while(current != null) {  
                //Prints each node by incrementing pointer  
                Console.Write(current.data + " ");  
                current = current.next;  
            }  
            Console.WriteLine();  
        }  
    }  
      
    public static void Main()  
    {  
        SinglyLinkedList<int> sList = new SinglyLinkedList<int>();  
          
        //Add nodes to the list  
        sList.addNode(1);  
        sList.addNode(2);  
        sList.addNode(3);  
        sList.addNode(4);  
          
        //Displays the nodes present in the list  
        sList.display();      
    }  
}  

 

Output:

Nodes of singly linked list: 
1 2 3 4

 

PHP

<!DOCTYPE html>  
<html>  
<body>  
<?php  
//Represent a node of singly linked list  
class Node{  
    public $data;  
    public $next;  
      
    function __construct($data){  
        $this->data = $data;  
        $this->next = NULL;  
    }  
}  
class SinglyLinkedList{  
    //Represent the head and tail of the singly linked list  
    public $head;  
    public $tail;  
    function __construct(){  
        $this->head = NULL;  
        $this->tail = NULL;  
    }  
      
    //addNode() will add a new node to the list  
    function addNode($data) {  
        //Create a new node  
        $newNode = new Node($data);  
          
        //Checks if the list is empty  
        if($this->head == NULL) {  
            //If list is empty, both head and tail will point to new node  
            $this->head = $newNode;  
            $this->tail = $newNode;  
        }  
        else {  
            //newNode will be added after tail such that tail's next will point to newNode  
            $this->tail->next = $newNode;  
            //newNode will become new tail of the list  
            $this->tail = $newNode;  
        }  
    }  
      
    //display() will display all the nodes present in the list  
    function display() {  
        //Node current will point to head  
        $current = $this->head;  
          
        if($this->head == NULL) {  
            print("List is empty <br>");  
            return;  
        }  
        print("Nodes of singly linked list: <br>");  
        while($current != NULL) {  
            //Prints each node by incrementing pointer  
            print($current->data . " ");  
            $current = $current->next;  
        }  
        print("<br>");  
    }  
}  
      
$sList = new SinglyLinkedList();  
          
//Add nodes to the list  
$sList->addNode(1);  
$sList->addNode(2);  
$sList->addNode(3);  
$sList->addNode(4);  
   
//Displays the nodes present in the list  
$sList->display();  
?>  
</body>  
</html>  

 

Output:

 Nodes of singly linked list: 
1 2 3 4

need an explanation for this answer? contact us directly to get an explanation for this answer

total answers (1)

Program to create a singly linked list of n nodes ... >>
<< singly Linked List...