Q:

Write a Python program using Scikit-learn to convert Species columns in a numerical column of the iris dataframe

0

Write a Python program using Scikit-learn to convert Species columns in a numerical column of the iris dataframe. To encode this data map convert each value to a number. e.g. Iris-setosa:0, Iris-versicolor:1, and Iris-virginica:2. Now print the iris dataset into 80% train data and 20% test data. Out of total 150 records, the training set will contain 120 records and the test set contains 30 of those records. Print both datasets.

All Answers

need an explanation for this answer? contact us directly to get an explanation for this answer

import pandas as pd
from sklearn.model_selection import train_test_split
iris = pd.read_csv("iris.csv")
# Import LabelEncoder
from sklearn import preprocessing
#creating labelEncoder
le = preprocessing.LabelEncoder()
# Converting string labels into numbers.
iris.Species = le.fit_transform(iris.Species)
#Drop id column
iris = iris.drop('Id',axis=1)
X = iris.iloc[:, :-1].values
y = iris.iloc[:, 4].values
#Split arrays or matrices into random train and test subsets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)
print("\n80% train data:")
print(X_train)
print(y_train)
print("\n20% test data:")
print(X_test)
print(y_test)

Sample Output:

80% train data:
[[5.7 4.4 1.5 0.4]
 [6.7 3.3 5.7 2.5]
 [6.5 3.2 5.1 2. ]
 [6.7 3.1 4.7 1.5]
 [4.6 3.6 1.  0.2]
 [4.7 3.2 1.3 0.2]
 [6.3 2.3 4.4 1.3]
 [5.6 2.9 3.6 1.3]
 [5.6 2.8 4.9 2. ]
 [5.4 3.9 1.3 0.4]
 [6.9 3.2 5.7 2.3]
 [5.  3.5 1.3 0.3]
 [5.3 3.7 1.5 0.2]
 [6.1 2.6 5.6 1.4]
 [6.2 2.8 4.8 1.8]
 [7.7 3.8 6.7 2.2]
 [6.3 3.3 6.  2.5]
 [6.3 2.5 4.9 1.5]
 [4.8 3.4 1.9 0.2]
 [5.8 4.  1.2 0.2]
 [4.9 3.1 1.5 0.1]
 [5.8 2.7 5.1 1.9]
 [5.5 2.4 3.8 1.1]
 [6.7 3.  5.2 2.3]
 [6.3 3.3 4.7 1.6]
 [5.1 3.7 1.5 0.4]
 [5.1 3.8 1.9 0.4]
 [5.4 3.9 1.7 0.4]
 [6.2 2.9 4.3 1.3]
 [6.1 3.  4.9 1.8]
 [5.7 3.8 1.7 0.3]
 [5.6 2.7 4.2 1.3]
 [7.2 3.6 6.1 2.5]
 [5.4 3.7 1.5 0.2]
 [5.1 2.5 3.  1.1]
 [6.  3.4 4.5 1.6]
 [5.  3.3 1.4 0.2]
 [5.7 2.8 4.5 1.3]
 [4.3 3.  1.1 0.1]
 [4.8 3.  1.4 0.3]
 [6.6 3.  4.4 1.4]
 [5.6 2.5 3.9 1.1]
 [6.6 2.9 4.6 1.3]
 [6.5 3.  5.5 1.8]
 [6.3 3.4 5.6 2.4]
 [6.7 3.1 5.6 2.4]
 [6.2 3.4 5.4 2.3]
 [4.9 3.1 1.5 0.1]
 [5.6 3.  4.1 1.3]
 [6.3 2.8 5.1 1.5]
 [5.7 2.6 3.5 1. ]
 [6.4 2.8 5.6 2.2]
 [5.9 3.2 4.8 1.8]
 [5.1 3.3 1.7 0.5]
 [6.8 3.2 5.9 2.3]
 [4.8 3.  1.4 0.1]
 [5.4 3.  4.5 1.5]
 [6.5 3.  5.8 2.2]
 [6.4 3.2 4.5 1.5]
 [5.  3.6 1.4 0.2]
 [6.9 3.1 4.9 1.5]
 [5.5 3.5 1.3 0.2]
 [5.5 4.2 1.4 0.2]
 [6.  2.2 5.  1.5]
 [6.7 3.  5.  1.7]
 [5.4 3.4 1.5 0.4]
 [6.4 2.8 5.6 2.1]
 [5.7 3.  4.2 1.2]
 [5.1 3.5 1.4 0.2]
 [4.9 3.1 1.5 0.1]
 [4.7 3.2 1.6 0.2]
 [5.4 3.4 1.7 0.2]
 [5.9 3.  5.1 1.8]
 [4.4 3.  1.3 0.2]
 [5.5 2.4 3.7 1. ]
 [4.4 3.2 1.3 0.2]
 [5.  3.4 1.6 0.4]
 [7.7 2.6 6.9 2.3]
 [4.6 3.2 1.4 0.2]
 [5.7 2.5 5.  2. ]
 [4.8 3.1 1.6 0.2]
 [6.3 2.7 4.9 1.8]
 [5.2 4.1 1.5 0.1]
 [5.8 2.6 4.  1.2]
 [6.3 2.9 5.6 1.8]
 [6.  3.  4.8 1.8]
 [5.8 2.7 5.1 1.9]
 [4.9 3.  1.4 0.2]
 [5.  3.  1.6 0.2]
 [7.  3.2 4.7 1.4]
 [5.2 3.5 1.5 0.2]
 [6.4 3.1 5.5 1.8]
 [7.7 2.8 6.7 2. ]
 [5.8 2.8 5.1 2.4]
 [6.1 2.9 4.7 1.4]
 [6.9 3.1 5.4 2.1]
 [5.6 3.  4.5 1.5]
 [5.2 3.4 1.4 0.2]
 [6.  2.9 4.5 1.5]
 [4.6 3.4 1.4 0.3]
 [4.9 2.5 4.5 1.7]
 [5.  3.4 1.5 0.2]
 [5.5 2.5 4.  1.3]
 [4.8 3.4 1.6 0.2]
 [7.3 2.9 6.3 1.8]
 [7.9 3.8 6.4 2. ]
 [6.7 3.3 5.7 2.1]
 [6.1 2.8 4.  1.3]
 [6.7 3.1 4.4 1.4]
 [6.9 3.1 5.1 2.3]
 [5.7 2.9 4.2 1.3]
 [6.3 2.5 5.  1.9]
 [6.4 3.2 5.3 2.3]
 [4.9 2.4 3.3 1. ]
 [5.1 3.8 1.5 0.3]
 [6.1 3.  4.6 1.4]
 [7.1 3.  5.9 2.1]
 [5.  2.3 3.3 1. ]
 [6.2 2.2 4.5 1.5]
 [5.  3.2 1.2 0.2]]
[0 2 2 1 0 0 1 1 2 0 2 0 0 2 2 2 2 1 0 0 0 2 1 2 1 0 0 0 1 2 0 1 2 0 1 1 0
 1 0 0 1 1 1 2 2 2 2 0 1 2 1 2 1 0 2 0 1 2 1 0 1 0 0 2 1 0 2 1 0 0 0 0 2 0
 1 0 0 2 0 2 0 2 0 1 2 2 2 0 0 1 0 2 2 2 1 2 1 0 1 0 2 0 1 0 2 2 2 1 1 2 1
 2 2 1 0 1 2 1 1 0]

20% test data:
[[5.5 2.6 4.4 1.2]
 [5.9 3.  4.2 1.5]
 [6.1 2.8 4.7 1.2]
 [5.8 2.7 3.9 1.2]
 [6.8 2.8 4.8 1.4]
 [5.  2.  3.5 1. ]
 [6.  2.7 5.1 1.6]
 [7.2 3.  5.8 1.6]
 [6.4 2.9 4.3 1.3]
 [6.7 2.5 5.8 1.8]
 [7.7 3.  6.1 2.3]
 [5.2 2.7 3.9 1.4]
 [5.1 3.8 1.6 0.2]
 [5.  3.5 1.6 0.6]
 [7.2 3.2 6.  1.8]
 [4.5 2.3 1.3 0.3]
 [5.1 3.5 1.4 0.3]
 [6.4 2.7 5.3 1.9]
 [5.5 2.3 4.  1.3]
 [5.8 2.7 4.1 1. ]
 [7.6 3.  6.6 2.1]
 [7.4 2.8 6.1 1.9]
 [6.5 3.  5.2 2. ]
 [5.1 3.4 1.5 0.2]
 [6.8 3.  5.5 2.1]
 [4.4 2.9 1.4 0.2]
 [4.6 3.1 1.5 0.2]
 [6.5 2.8 4.6 1.5]
 [5.7 2.8 4.1 1.3]
 [6.  2.2 4.  1. ]]
[1 1 1 1 1 1 1 2 1 2 2 1 0 0 2 0 0 2 1 1 2 2 2 0 2 0 0 1 1 1]
 

need an explanation for this answer? contact us directly to get an explanation for this answer

total answers (1)

Similar questions


need a help?


find thousands of online teachers now