import numpy as np
nums = np.random.random((7, 5))
print("Original array:")
print(nums)
print("\nDelete the first column of the said array:")
print(np.delete(nums, [0], axis=1))
print("\nDelete the last column of the said array:")
print(np.delete(nums, [4], axis=1))
Sample Output:
Original array:
[[0.54420704 0.35710194 0.79167579 0.72249474 0.99968936]
[0.22306352 0.31085825 0.09849254 0.11708716 0.45757945]
[0.19381592 0.13587749 0.90455038 0.95146017 0.55716851]
[0.62031347 0.84275698 0.84665943 0.06562172 0.58415968]
[0.41903059 0.0660559 0.85270403 0.94184265 0.95371587]
[0.02577681 0.91577282 0.1969686 0.3472482 0.23337827]
[0.43563908 0.62308811 0.09606371 0.79053989 0.69382428]]
Delete the first column of the said array:
[[0.35710194 0.79167579 0.72249474 0.99968936]
[0.31085825 0.09849254 0.11708716 0.45757945]
[0.13587749 0.90455038 0.95146017 0.55716851]
[0.84275698 0.84665943 0.06562172 0.58415968]
[0.0660559 0.85270403 0.94184265 0.95371587]
[0.91577282 0.1969686 0.3472482 0.23337827]
[0.62308811 0.09606371 0.79053989 0.69382428]]
Delete the last column of the said array:
[[0.54420704 0.35710194 0.79167579 0.72249474]
[0.22306352 0.31085825 0.09849254 0.11708716]
[0.19381592 0.13587749 0.90455038 0.95146017]
[0.62031347 0.84275698 0.84665943 0.06562172]
[0.41903059 0.0660559 0.85270403 0.94184265]
[0.02577681 0.91577282 0.1969686 0.3472482 ]
[0.43563908 0.62308811 0.09606371 0.79053989]]
Sample Output:
need an explanation for this answer? contact us directly to get an explanation for this answer