Write a NumPy program to convert a Python dictionary to a Numpy ndarray.
import numpy as np from ast import literal_eval udict = """{"column0":{"a":1,"b":0.0,"c":0.0,"d":2.0}, "column1":{"a":3.0,"b":1,"c":0.0,"d":-1.0}, "column2":{"a":4,"b":1,"c":5.0,"d":-1.0}, "column3":{"a":3.0,"b":-1.0,"c":-1.0,"d":-1.0} }""" t = literal_eval(udict) print("\nOriginal dictionary:") print(t) print("Type: ",type(t)) result_nparra = np.array([[v[j] for j in ['a', 'b', 'c', 'd']] for k, v in t.items()]) print("\nndarray:") print(result_nparra) print("Type: ",type(result_nparra))
Sample Output:
Original dictionary: {'column0': {'a': 1, 'b': 0.0, 'c': 0.0, 'd': 2.0}, 'column1': {'a': 3.0, 'b': 1, 'c': 0.0, 'd': -1.0}, 'column2': {'a': 4, 'b': 1, 'c': 5.0, 'd': -1.0}, 'column3': {'a': 3.0, 'b': -1.0, 'c': -1.0, 'd': -1.0}} Type: <class 'dict'> ndarray: [[ 1. 0. 0. 2.] [ 3. 1. 0. -1.] [ 4. 1. 5. -1.] [ 3. -1. -1. -1.]] Type: <class 'numpy.ndarray'>
total answers (1)
start bookmarking useful questions and collections and save it into your own study-lists, login now to start creating your own collections.
Sample Output:
need an explanation for this answer? contact us directly to get an explanation for this answer