import numpy as np
x = np.array([200, 300, np.nan, np.nan, np.nan ,700])
y = np.array([[1, 2, 3], [np.nan, 0, np.nan] ,[6,7,np.nan]] )
print("Original array:")
print(x)
print("After removing nan values:")
result = x[np.logical_not(np.isnan(x))]
print(result)
print("\nOriginal array:")
print(y)
print("After removing nan values:")
result = y[np.logical_not(np.isnan(y))]
print(result)
Sample Output:
Original array:
[200. 300. nan nan nan 700.]
After removing nan values:
[200. 300. 700.]
Original array:
[[ 1. 2. 3.]
[nan 0. nan]
[ 6. 7. nan]]
After removing nan values:
[1. 2. 3. 0. 6. 7.]
Sample Output:
need an explanation for this answer? contact us directly to get an explanation for this answer