add(x1, x2[, out])
Add arguments element-wise.
Parameters
----------
x1, x2 : array_like
The arrays to be added. If ``x1.shape != x2.shape``, they must be
broadcastable to a common shape (which may be the shape of one or
the other).
Returns
-------
add : ndarray or scalar
The sum of `x1` and `x2`, element-wise. Returns a scalar if
both `x1` and `x2` are scalars.
Notes
-----
Equivalent to `x1` + `x2` in terms of array broadcasting.
Examples
--------
>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[ 0., 2., 4.],
[ 3., 5., 7.],
[ 6., 8., 10.]])
None
Sample Output:
add(x1, x2[, out]) Add arguments element-wise. Parameters ---------- x1, x2 : array_like The arrays to be added. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- add : ndarray or scalar The sum of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` + `x2` in terms of array broadcasting. Examples -------- >>> np.add(1.0, 4.0) 5.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]]) Noneneed an explanation for this answer? contact us directly to get an explanation for this answer