The density function of a random variable X is given by:f(x)={(cx , 0<X<2 0 otherwise)┤The S.D
Since ∫_(-∞)^∞ 〖f(x)〗 dx=1∴1=c∫_0^2 x dx=c/2 [x^2 ]_0^2=2c→c=1/2E(X)=1/2 ∫_0^2 x^2 dx=1/2 [x^3/3]_0^2=4/3E(X^2 )=1/2 ∫_0^2 x^3 dx=1/2 [x^4/4]_0^2=2∴E(3X^2-2X)=3E(X^2 )-2E(X)=6-8/3=10/3V(X)=E(X^2 )-(E(X) ) ̅ ́^2=2-16/9=2/9∴σ_x=√(V(X))=√2/3
total answers (1)
start bookmarking useful questions and collections and save it into your own study-lists, login now to start creating your own collections.
Since ∫_(-∞)^∞ 〖f(x)〗 dx=1
need an explanation for this answer? contact us directly to get an explanation for this answer∴1=c∫_0^2 x dx=c/2 [x^2 ]_0^2=2c→c=1/2
E(X)=1/2 ∫_0^2 x^2 dx=1/2 [x^3/3]_0^2=4/3
E(X^2 )=1/2 ∫_0^2 x^3 dx=1/2 [x^4/4]_0^2=2
∴E(3X^2-2X)=3E(X^2 )-2E(X)=6-8/3=10/3
V(X)=E(X^2 )-(E(X) ) ̅ ́^2=2-16/9=2/9
∴σ_x=√(V(X))=√2/3