Q:

If we transform the basis of P4, then Theorem SSRLT guarantees we will have a spanning set of R(T )

0

Let T : P4 P3 be given by T (p(x)) = p(x), where p(x) is the derivative. Find a basis of R(T ). Is T surjective?

 

All Answers

need an explanation for this answer? contact us directly to get an explanation for this answer

 

If we transform the basis of P4, then Theorem SSRLT guarantees we will have a spanning set of R(T ).A basis of P4 is1, x, x2, x3, x4 }. If we transform the elements of this set, we get     the set  {0,1, x, x2, x3, x4}which is a spanning set for R(T ). Reducing this to a linearly independent set,we find that {1, 2x, 3x2, 4x3} is a basis of R(T ). Since R(T ) and P3 both have dimension 4, T is surjective.

 

need an explanation for this answer? contact us directly to get an explanation for this answer

total answers (1)

Similar questions


need a help?


find thousands of online teachers now